《数列》数学教学反思
身为一名刚到岗的人民教师,我们的工作之一就是课堂教学,对学到的教学新方法,我们可以记录在教学反思中,怎样写教学反思才更能起到其作用呢?以下是小编收集整理的《数列》数学教学反思,仅供参考,希望能够帮助到大家。
《数列》数学教学反思1问题是数学的心脏,问题意识是创造性思维能力的核心。怎样的问题才叫做“好”,罗强老师给出了精湛的描述:初始性、情境性、全息性、结构性。
我想,一个好的问题如同一个生动活泼、引人入胜的故事,吸引着学生兴趣盎然的步入数学殿堂;一个好的问题犹如一颗优质的种子,让数学知识在此生根发芽,成为枝繁叶茂的参天大树;一个好的问题能让学生的思维插上翅膀,在数学的天空自由翱翔……
数列整个中学数学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,尤其是加深了学生对函数概念的认识,并从函数的观点出发来研究数列问题,使对数列的认识更深入一步;而学习数列又为后面学习数学归纳法等内容作了铺垫。同时数列还有着非常广泛的实际应用,是反映自然规律的基本数学模型。有助于培养学生的建模能力,发展应用意识。数列还是培养学生数学思维能力的好题材,自始至终贯穿着观察、分析、归纳、类比、递推、运算、概括、猜想应用等能力的培养,不仅如此,数列还是对学生进行计算、推理等基本训练、综合训练的重要题材。因此学好数列有助于学 ……此处隐藏4749个字……数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉。在推导过程中,需要学生有一定的观察分析猜想能力。第一项是否成立又须补充说明,所以通项公式的推导是难点。
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。