数学教学计划【精】
人生天地之间,若白驹过隙,忽然而已,成绩已属于过去,新一轮的工作即将来临,写一份计划,为接下来的学习做准备吧!拟起计划来就毫无头绪?以下是小编为大家整理的数学教学计划,希望能够帮助到大家。
数学教学计划1一、指导思想
以科学发展观为指导,以教育创新为动力,以省“减负”精神为宗旨。为打造“优质均衡和谐教育”而努力。树立全面、协调、可持续发展的科学发展观,深刻认识新时期新阶段对基础教育工作的新要求,突出重点,提高效率,狠抓落实,大力推进以课程改革为重点的素质教育,促进发展,提高教学质量,促进学生德智体美全面发展。
二、班级分析
执教的班级共有51名学生,二年级的学生在经过一年的数学学习后,基本知识技能有了很大的提高,对数学学习也有了必须的了解。在动手操作,语言表达等方面有了很大的提高,合作互助了意识也有了明显的增强,可是学生之间存在着明显的差距。优等生思维活跃,发言进取;中等生课堂上几乎是“默默无闻”;后进生学习方法不得当,对每个基础知识掌握的速度总是慢许多。所以,在这一学期的教学中更多关注后进生学生学习兴趣和学习方法的培养上,并使不一样的学生得到不一样的发展。
三、教材分析
(一)教学资料
本学期教材资料包括下头一些资料:100以内的加、减法的笔算,表内乘法(一),表内乘法(二),认识长度单位厘米和米,初步认识角,从不一样的位置观察物体和 ……此处隐藏32641个字……>
课时分配(15课时)
2.1.1引言、指数与指数幂的运算约3课时9月27日30日2.1.2指数函数及其性质约3课时10月8日10日2.2.1对数与对数运算约3课时10月11日14日2.2.2对数函数及其性质约3课时10月15日18日2.3幂函数约1课时10月19日24日小结约2课时
第三章函数的应用
1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
3.1.1方程的根与函数的零点约1课时10月25日3.1.2用二分法求方程的近似解约2课时10月26日27日3.2.1几类不同增长的函数模型约2课时10月30日 | 11月3日3.2.2函数模型的应用实例约2课时小结约1课时
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。